Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soil moisture data assimilation (SM-DA) is a valuable approach for enhancing streamflow prediction in rainfall-runoff models. However, most studies have focused on incorporating remotely sensed SM, and their results strongly depend on the quality of satellite products. Compared with remote sensing products, in situ observed SM data provide greater accuracy and more effectively capture temporal fluctuations in soil moisture levels. Therefore, the effectiveness of SM-DA in improving streamflow prediction remains site-specific and requires further validation. Here, we employed the Ensemble Kalman filter (EnKF) to integrate daily SM into lumped and distributed approaches of the Xinanjiang (XAJ) hydrological model to assess the importance of SM-DA in streamflow prediction. We observed a general improvement in streamflow prediction after conducting SM-DA. Specifically, the Nash-Sutcliffe efficiency increased from 0.61 to 0.65 for the lumped and from 0.62 to 0.70 for the distributed approaches. Moreover, the efficiency of SM-DA exhibits seasonal variation, with in situ SM proving particularly valuable for streamflow prediction during the wet-cold season compared to the dry-warm season. Notably, daily SM data from deep layers exhibit a stronger capability to improve streamflow prediction compared to surface SM. This indicates the significance of deep SM information for streamflow prediction in mountain areas. Overall, this study effectively demonstrates the efficacy of assimilating SM data to improve hydrological models in streamflow prediction. These findings contribute to our understanding of the connection between SM, streamflow, and hydrological connectivity in headwater catchments.more » « less
-
We introduce a code generator that converts unoptimized C++ code operating on sparse data into vectorized and parallel CPU or GPU kernels. Our approach unrolls the computation into a massive expression graph, performs redundant expression elimination, grouping, and then generates an architecture-specific kernel to solve the same problem, assuming that the sparsity pattern is fixed, which is a common scenario in many applications in computer graphics and scientific computing. We show that our approach scales to large problems and can achieve speedups of two orders of magnitude on CPUs and three orders of magnitude on GPUs, compared to a set of manually optimized CPU baselines. To demonstrate the practical applicability of our approach, we employ it to optimize popular algorithms with applications to physical simulation and interactive mesh deformation.more » « less
-
Interval computation is widely used in Computer Aided Design to certify computations that use floating point operations to avoid pitfalls related to rounding error introduced by inaccurate operations. Despite its popularity and practical benefits, support for interval arithmetic is not standardized nor available in mainstream programming languages. We propose the first benchmark for interval computations, coupled with reference solutions computed with exact arithmetic, and compare popular C and C++ libraries over different architectures, operating systems, and compilers. The benchmark allows identifying limitations in existing implementations, and provides a reliable guide on which library to use on each system for different CAD applications. We believe that our benchmark will be useful for developers of future interval libraries, as a way to test the correctness and performance of their algorithms.more » « less
An official website of the United States government

Full Text Available